Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Transl Med ; 21(1): 908, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087354

RESUMO

BACKGROUND: Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS: Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens ß-alanine, BAM 8-22 and cowhage extract. RESULTS: The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not ß-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by ß-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and ß-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by ß-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION: Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.


Assuntos
Capsaicina , Pele , Humanos , Capsaicina/farmacologia , Prurido/induzido quimicamente , Dor , Transdução de Sinais , beta-Alanina/efeitos adversos
2.
J Peripher Nerv Syst ; 28(2): 202-225, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029502

RESUMO

BACKGROUND: Diabetic metabolism causes changes of the chemical milieu including accumulation of reactive carbonyl species, for example, methylglyoxal (MGO). MGO activates chemosensitive TRPA1 on nociceptors, but the contribution to neuronal pathophysiology causing pain and hyperalgesia in diabetic neuropathy is not fully understood. METHODS: We employed single-nerve-fiber recordings in type 2 diabetes patients with (spDN) and without cutaneous pain (DN) and in streptozotocin-diabetic and healthy mice. In mice, we measured Ca++ transients in cultured DRG neurons and stimulated CGRP release from hairy skin. RESULTS: In diabetic patients, we recorded a large proportion of pathologically altered nerve C-fibers (79%). In spDN patients we found a higher percentage (72%) of spontaneously active C-nociceptors than in DN patients (15%). The proportion of spontaneous activity was highest among pathological fibers with mechanoinsensitive fiber properties which are particularly sensitive to MGO in contrast to mechanosensitive fibers. Mouse polymodal nociceptors, in contrast to purely mechanosensitive C-fibers, showed highest prevalence of TRPA1-related chemosensitivity. In diabetic mice about 37% of polymodal nociceptors developed spontaneous activity and exhibited significantly greater MGO responses, indicating sensitized TRPA1 receptors. Low-threshold mechanosensitive Aδ-fibers were vigorously activated by MGO but independently of TRPA1 activation. INTERPRETATION: Our translational findings suggest that TRPA1-expressing C-nociceptors, which in human correspond to mechanoinsensitive and in mice to polymodal nociceptors, are especially vulnerable to develop spontaneous activity. Those two different nociceptor classes might share the functional role as dicarbonyl-sensitive chemosensors and represent the critical nociceptor population that support the development of pain and hyperalgesia in diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Nociceptores/metabolismo , Hiperalgesia/etiologia , Canais de Potencial de Receptor Transitório/metabolismo , Neuropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Óxido de Magnésio/metabolismo , Dor
3.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503420

RESUMO

Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.


Assuntos
Infecções Bacterianas , Paladar , Animais , Células Epiteliais , Imunidade Inata , Camundongos , Pseudomonas aeruginosa , Transdução de Sinais , Paladar/fisiologia , Traqueia
4.
PLoS One ; 17(4): e0266669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482725

RESUMO

Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures.


Assuntos
Diterpenos , Imageamento por Ressonância Magnética , Animais , Diterpenos/farmacologia , Masculino , Nociceptividade/fisiologia , Ratos , Canais de Cátion TRPV/agonistas
5.
Pflugers Arch ; 474(6): 647, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378618
6.
Physiol Rep ; 10(6): e15194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35340127

RESUMO

The most widely used formalin test to screen antinociceptive drug candidates is still apostrophized as targeting inflammatory pain, in spite of strong opposing evidence published. In our rat skin-nerve preparation ex vivo, recording from all classes of sensory single-fibers (n = 32), 30 units were transiently excited by formaldehyde concentrations 1-100 mM applied to receptive fields (RFs) for 3 min, C and Aδ-fibers being more sensitive (1-30 mM) than Aß-fibers. From 30 mM on, ~1% of the concentration usually injected in vivo, all RFs were defunctionalized and conduction in an isolated sciatic nerve preparation was irreversibly blocked. Thus, formaldehyde, generated a state of 'anesthesia dolorosa' in the RFs in so far as after a quiescent interphase all fibers with unmyelinated terminals developed a second phase of vigorous discharge activity which correlated well in time course and magnitude with published pain-related behaviors. Sural nerve filament recordings in vivo confirmed that higher formalin concentrations (> 42 mM) have to be injected to the skin to induce this second phase of discharge. Patch-clamp and calcium-imaging confirmed TRPA1 as the primary transducer of formaldehyde (10 mM) effects on mouse sensory neurons. However, stimulated CGRP release from isolated skin of TRPA1+/+ and TRPA1-/- mice showed a convergence of the saturating concentration-response curves at 100 mM formaldehyde, which did not occur with nerve and trachea preparations. Finally, skin-nerve recordings from C and Aδ-fibers of TRPA1-/- mice revealed a massive reduction in formaldehyde (30 mM)-evoked discharge. However, the remaining activity was still biphasic, thus confirming additional unspecific excitotoxic actions of the fixative that diffuses along still excitable axons as previously published. The multiplicity of formaldehyde's actions requires extensive discussion and literature review, leading to a fundamental reevaluation of the formalin test.


Assuntos
Dor , Roedores , Animais , Camundongos , Dor/induzido quimicamente , Medição da Dor , Ratos , Células Receptoras Sensoriais , Pele/inervação
7.
Pflugers Arch ; 474(4): 405-420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157132

RESUMO

The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.


Assuntos
Hiperalgesia , Dor , Capsaicina , Humanos , Canais Iônicos , Prêmio Nobel , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Temperatura
8.
Nicotine Tob Res ; 24(12): 1849-1860, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-35199839

RESUMO

Tobacco smoking-related diseases are estimated to kill more than 8 million people/year and most smokers are willing to stop smoking. The pharmacological approach to aid smoking cessation comprises nicotine replacement therapy (NRT) and inhibitors of the nicotinic acetylcholine receptor, which is activated by nicotine. Common side effects of oral NRT products include hiccoughs, gastrointestinal disturbances and, most notably, irritation, burning and pain in the mouth and throat, which are the most common reasons for premature discontinuation of NRT and termination of cessation efforts. Attempts to reduce the unwanted sensory side effects are warranted, and research discovering the most optimal masking procedures is urgently needed. This requires a firm mechanistic understanding of the neurobiology behind the activation of sensory nerves and their receptors by nicotine. The sensory nerves in the oral cavity and throat express the so-called transient receptor potential (TRP) channels, which are responsible for mediating the nicotine-evoked irritation, burning and pain sensations. Targeting the TRP channels is one way to modulate the unwanted sensory side effects. A variety of natural (Generally Recognized As Safe [GRAS]) compounds interact with the TRP channels, thus making them interesting candidates as safe additives to oral NRT products. The present narrative review will discuss (1) current evidence on how nicotine contributes to irritation, burning and pain in the oral cavity and throat, and (2) options to modulate these unwanted side-effects with the purpose of increasing adherence to NRT. Nicotine provokes irritation, burning and pain in the oral cavity and throat. Managing these side effects will ensure better compliance to oral NRT products and hence increase the success of smoking cessation. A specific class of sensory receptors (TRP channels) are involved in mediating nicotine's sensory side effects, making them to potential treatment targets. Many natural (Generally Recognized As Safe [GRAS]) compounds are potentially beneficial modulators of TRP channels.


Assuntos
Abandono do Hábito de Fumar , Canais de Potencial de Receptor Transitório , Humanos , Animais , Dispositivos para o Abandono do Uso de Tabaco , Nicotina/efeitos adversos , Abandono do Hábito de Fumar/métodos , Agonistas Nicotínicos/uso terapêutico , Faringe , Boca , Dor
9.
Pain ; 163(3): 445-460, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166323

RESUMO

ABSTRACT: Lysophosphatidic acid (LPA) is involved in the pathophysiology of cholestatic pruritus and neuropathic pain. Slowly conducting peripheral afferent C-nerve fibers are crucial in the sensations of itch and pain. In animal studies, specialized neurons ("pruriceptors") have been described, expressing specific receptors, eg, from the Mas-related G-protein-coupled receptor family. Human nerve fibers involved in pain signaling ("nociceptors") can elicit itch if activated by focalized stimuli such as cowhage spicules. In this study, we scrutinized the effects of LPA in humans by 2 different application modes on the level of psychophysics and single nerve fiber recordings (microneurography). In healthy human subjects, intracutaneous LPA microinjections elicited burning pain, whereas LPA application through inactivated cowhage spicules evoked a moderate itch sensation. Lysophosphatidic acid microinjections induced heat hyperalgesia and hypersensitivity to higher electrical stimulus frequencies. Pharmacological blockade of transient receptor potential channel A1 or transient receptor potential channel vanilloid 1 reduced heat hyperalgesia, but not acute chemical pain. Microneurography revealed an application mode-dependent differential activation of mechanosensitive (CM) and mechanoinsensitive C (CMi) fibers. Lysophosphatidic acid microinjections activated a greater proportion of CMi fibers and more strongly than CM fibers; spicule application of LPA activated CM and CMi fibers to a similar extent but excited CM fibers more and CMi fibers less intensely than microinjections. In conclusion, we show for the first time in humans that LPA can cause pain as well as itch dependent on the mode of application and activates afferent human C fibers. Itch may arise from focal activation of few nerve fibers with distinct spatial contrast to unexcited surrounding afferents and a specific combination of activated fiber subclasses might contribute.


Assuntos
Neuralgia , Nociceptores , Animais , Histamina/efeitos adversos , Humanos , Lisofosfolipídeos , Fibras Nervosas Amielínicas/fisiologia , Neuralgia/complicações , Nociceptores/fisiologia , Prurido/etiologia , Pele/inervação
10.
Exp Neurol ; 346: 113838, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450183

RESUMO

Painful diabetic neuropathy occurs in approximately 20% of diabetic patients with underlying pathomechanisms not fully understood. We evaluated the contribution of the CaV3.2 isoform of T-type calcium channel to hyperglycemia-induced changes in cutaneous sensory C-fiber functions and neuropeptide release employing the streptozotocin (STZ) diabetes model in congenic mouse strains including global knockouts (KOs). Hyperglycemia established for 3-5 weeks in male C57BL/6J mice led to major reorganizations in peripheral C-fiber functions. Unbiased electrophysiological screening of mechanosensitive single-fibers in isolated hairy hindpaw skin revealed a relative loss of (polymodal) heat sensing in favor of cold sensing. In healthy CaV3.2 KO mice both heat and cold sensitivity among the C-fibers seemed underrepresented in favor of exclusive mechanosensitivity, low-threshold in particular, which deficit became significant in the diabetic KOs. Diabetes also led to a marked increase in the incidence of spontaneous discharge activity among the C-fibers of wildtype mice, which was reduced by the specific CaV3.2 blocker TTA-P2 and largely absent in the KOs. Evaluation restricted to the peptidergic class of nerve fibers - measuring KCl-stimulated CGRP release - revealed a marked reduction in the sciatic nerve by TTA-P2 in healthy but not diabetic wildtypes, the latter showing CGRP release that was as much reduced as in healthy and, to the same extent, in diabetic CaV3.2 KOs. These data suggest that diabetes abrogates all CaV3.2 functionality in the peripheral nerve axons. In striking contrast, diabetes markedly increased the KCl-stimulated CGRP release from isolated hairy skin of wildtypes but not KO mice, and TTA-P2 reversed this increase, strongly suggesting a de novo expression of CaV3.2 in peptidergic cutaneous nerve endings which may contribute to the enhanced spontaneous activity. De-glycosylation by neuraminidase showed clear desensitizing effects, both in regard to spontaneous activity and stimulated CGRP release, but included actions independent of CaV3.2. However, as diabetes-enhanced glycosylation is decisive for intra-axonal trafficking, it may account for the substantial reorganizations of the CaV3.2 distribution. The results may strengthen the validation of CaV3.2 channel as a therapeutic target of treating painful diabetic neuropathy.


Assuntos
Canais de Cálcio Tipo T/biossíntese , Neuropatias Diabéticas/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Pele/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Diabetes Mellitus Experimental , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/genética , Neuralgia/patologia , Nociceptores/patologia , Técnicas de Cultura de Órgãos , Pele/inervação , Pele/patologia
11.
Eur J Pain ; 25(1): 122-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32862473

RESUMO

BACKGROUND: PUVA (psoralen UVA) therapy is used to treat a variety of skin conditions, such as vitiligo psoriasis, eczema and mycosis fungoides, but it is frequently accompanied by phototoxicity leading to burning pain, itch and erythema. METHODS: We used a combination of calcium and reactive oxygen species (ROS) imaging, patch clamp and neuropeptide release measurement to investigate whether certain ion channels involved in pain and itch signalling could be responsible for these adverese effects of PUVA. RESULTS: Clinically used psoralen derivatives 8-methoxypsoralen (8-MOP) and 5-methoxypsoralen at physiologically relevant concentrations were able to activate and photosensitize two recombinant thermoTRP (temperature-gated Transient Receptor Potential) ion channels, TRPA1 (Transient Receptor Potential Ankyrin type 1) and TRPV1 (Transient Receptor Potential Vanilloid type 1). 8-MOP enhanced ROS production by UVA light, and the effect of 8-MOP on TRPA1 could be abolished by the antioxidant N-acetyl cysteine and by removal of critical cysteine residues from the N-terminus domain of the channel. Natively expressed mouse TRPA1 and TRPV1 both contribute to photosensitization of cultured primary afferent neurons by 8-MOP, while direct neuronal activation by this psoralen-derivative is mainly dependent on TRPV1. Both TRPA1 and TRPV1 are to a large extent involved in controlling 8-MOP-induced neuropeptide release from mouse trachea. CONCLUSIONS: Taken together our results provide a better understanding of the phototoxicity reported by PUVA patients and indicate a possible therapeutic approach to alleviate the adverse effects associated with this therapy. SIGNIFICANCE: Our work provides evidence for the involvement of thermoTRP channels TRPA1 and TRPV1 in the activation and photosensitization of peripheral nociceptors during PUVA (Psoralen UVA) therapy.


Assuntos
Furocumarinas , Canais de Potencial de Receptor Transitório , Animais , Anquirinas , Humanos , Camundongos , Canal de Cátion TRPA1 , Canais de Cátion TRPV
12.
Am J Physiol Renal Physiol ; 319(5): F822-F832, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017188

RESUMO

Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Rim/efeitos dos fármacos , Nefrite/tratamento farmacológico , Neurônios Aferentes/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Animais , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Substância P/metabolismo
13.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434221

RESUMO

Shang et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201603081) reported that activation of lysosomal TRPA1 channels led to intracellular calcium transients and CGRP release from DRG neurons. We argue that both findings are more likely due to influx of insufficiently buffered extracellular calcium rather than lysosomal release.


Assuntos
Cálcio , Gânglios Espinais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Canal de Cátion TRPA1/genética
14.
J Biol Chem ; 295(19): 6330-6343, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32198181

RESUMO

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Desoxiglucose/análogos & derivados , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Aldeído Pirúvico/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Animais , Bradicinina/farmacologia , Desoxiglucose/farmacologia , Interações Medicamentosas , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Prostaglandinas/farmacologia , Temperatura
15.
Sci Rep ; 10(1): 2326, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047194

RESUMO

Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, ß-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7-/- showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8-/- impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.


Assuntos
Histamina/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.9/fisiologia , Prurido/prevenção & controle , Animais , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.8/química , Canal de Sódio Disparado por Voltagem NAV1.9/química , Prurido/induzido quimicamente , Prurido/patologia , Transdução de Sinais
16.
Naunyn Schmiedebergs Arch Pharmacol ; 393(2): 177-189, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31482262

RESUMO

The aminosteroid U73122 is frequently used as a phospholipase C (PLC) inhibitor and as such was used to investigate PLC-dependent activation and modulation of the transient receptor potential ankyrin type 1 (TRPA1) receptor channel. However, U73122 was recently shown to activate recombinant TRPA1 directly, albeit this interaction was not further explored. Our aim was to perform a detailed characterization of this agonistic action of U73122 on TRPA1. We used Fura-2 calcium microfluorimetry and the patch clamp technique to investigate the effect of U73122 on human and mouse wild type and mutant (C621S/C641S/C665S) TRPA1 expressed in HEK293t cells, as well as native TRPA1 in primary afferent neurons from wild type and TRPV1 and TRPA1 null mutant mice. In addition, we measured calcitonin gene-related peptide (CGRP) release from skin isolated from wild-type and TRPA1 null mutant mice. Human and mouse TRPA1 channels were activated by U73122 in the low nanomolar range. This activation was only partially dependent upon modification of the N-terminal cysteines 621, 641, and 665. U73122 also activated a subpopulation of neurons from wild-type and TRPV1 null mutant mice, but this effect was absent in mice deficient of TRPA1. In addition, U73122 evoked marked calcitonin gene-related peptide (CGRP) release from skin preparations of wild type but not TRPA1 null mutant mice. Our results indicate that U73122 is a potent and selective TRPA1 agonist. This effect should be taken into account when U73122 is used to inhibit PLC in TRPA1-expressing cells, such as primary nociceptors. In addition, U73122 may present a novel lead compound for the development of TRPA1-targeting drugs.


Assuntos
Estrenos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Canal de Cátion TRPA1/agonistas , Fosfolipases Tipo C/antagonistas & inibidores , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1/fisiologia , Fosfolipases Tipo C/fisiologia
17.
Mol Pain ; 14: 1744806918811699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345869

RESUMO

BACKGROUND: Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. RESULTS: Activation of the nociceptive transient receptor potential (TRP) ion channels TRPA1 and TRPV1 was studied in a transfected HEK293t cell line by whole-cell voltage clamp recordings of induced inward ion currents. Calcium influx in sensory neurons of wild-type and trp knockout mice was ratiometrically measured by Fura2-AM staining. Stimulated calcitonin gene-related peptide release from mouse sciatic nerves was detected by enzyme immunoassay. Painfulness of different etomidate formulations was tested in a translational human pain model. Etomidate as well as propylene glycol proved to be effective agonists of TRPA1 and TRPV1 ion channels at clinically relevant concentrations. Etomidate consistently activated TRPA1, but there was also evidence for a contribution of TRPV1 in dependence of drug concentration ranges and species specificities. Distinct N-terminal cysteine and lysine residues seemed to mediate gating of TRPA1, although the electrophile scavenger N-acetyl-L-cysteine did not prevent its activation by etomidate. Propylene glycol-induced activation of TRPA1 and TRPV1 appeared independent of the concomitant high osmolarity. Intradermal injections of etomidate as well as propylene glycol evoked severe burning pain in the human pain model that was absent with emulsification of etomidate. CONCLUSIONS: Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.


Assuntos
Etomidato/farmacologia , Dor/fisiopatologia , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/induzido quimicamente , Dor/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
18.
PLoS One ; 13(9): e0203215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30260982

RESUMO

Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fator de Crescimento Neural/fisiologia , Neuritos/fisiologia , Neuritos/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Capsaicina/farmacologia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Técnicas In Vitro , Camundongos , Modelos Neurológicos , Fator de Crescimento Neural/administração & dosagem , Neuritos/efeitos dos fármacos , Potássio/farmacologia , Sus scrofa , Canais de Cátion TRPV/metabolismo
19.
J Gen Physiol ; 150(8): 1125-1144, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29970412

RESUMO

Damage-sensing nociceptors in the skin provide an indispensable protective function thanks to their specialized ability to detect and transmit hot temperatures that would block or inflict irreversible damage in other mammalian neurons. Here we show that the exceptional capacity of skin C-fiber nociceptors to encode noxiously hot temperatures depends on two tetrodotoxin (TTX)-resistant sodium channel α-subunits: NaV1.8 and NaV1.9. We demonstrate that NaV1.9, which is commonly considered an amplifier of subthreshold depolarizations at 20°C, undergoes a large gain of function when temperatures rise to the pain threshold. We also show that this gain of function renders NaV1.9 capable of generating action potentials with a clear inflection point and positive overshoot. In the skin, heat-resistant nociceptors appear as two distinct types with unique and possibly specialized features: one is blocked by TTX and relies on NaV1.9, and the second type is insensitive to TTX and composed of both NaV1.8 and NaV1.9. Independent of rapidly gated TTX-sensitive NaV channels that form the action potential at pain threshold, NaV1.8 is required in all heat-resistant nociceptors to encode temperatures higher than ∼46°C, whereas NaV1.9 is crucial for shaping the action potential upstroke and keeping the NaV1.8 voltage threshold within reach.


Assuntos
Temperatura Alta , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Nociceptores/metabolismo , Potenciais de Ação , Animais , Linhagem Celular , Evolução Molecular , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Limiar da Dor , Técnicas de Patch-Clamp , Pele
20.
J Allergy Clin Immunol ; 141(5): 1677-1689.e8, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29427643

RESUMO

BACKGROUND: TH2 cell-released IL-31 is a critical mediator in patients with atopic dermatitis (AD), a prevalent and debilitating chronic skin disorder. Brain-derived natriuretic peptide (BNP) has been described as a central itch mediator. The importance of BNP in peripheral (skin-derived) itch and its functional link to IL-31 within the neuroimmune axis of the skin is unknown. OBJECTIVE: We sought to investigate the function of BNP in the peripheral sensory system and skin in IL-31-induced itch and neuroepidermal communication in patients with AD. METHODS: Ca2+ imaging, immunohistochemistry, quantitative real-time PCR, RNA sequencing, knockdown, cytokine/phosphokinase arrays, enzyme immune assay, and pharmacologic inhibition were performed to examine the cellular basis of the IL-31-stimulated, BNP-related itch signaling in dorsal root ganglionic neurons (DRGs) and skin cells, transgenic AD-like mouse models, and human skin of patients with AD and healthy subjects. RESULTS: In human DRGs we confirmed expression and co-occurrence of oncostatin M receptor ß subunit and IL-31 receptor A in a small subset of the neuronal population. Furthermore, IL-31 activated approximately 50% of endothelin-1-responsive neurons, and half of the latter also responded to histamine. In murine DRGs IL-31 upregulated Nppb and induced soluble N-ethylmaleimide-sensitive factor activating protein receptor-dependent BNP release. In Grhl3PAR2/+ mice house dust mite-induced severe AD-like dermatitis was associated with Nppb upregulation. Lesional IL-31 transgenic mice also exhibited increased Nppb transcripts in DRGs and the skin; accordingly, skin BNP receptor levels were increased. Importantly, expression of BNP and its receptor were increased in the skin of patients with AD. In human skin cells BNP stimulated a proinflammatory and itch-promoting phenotype. CONCLUSION: For the first time, our findings show that BNP is implicated in AD and that IL-31 regulates BNP in both DRGs and the skin. IL-31 enhances BNP release and synthesis and orchestrates cytokine and chemokine release from skin cells, thereby coordinating the signaling pathways involved in itch. Inhibiting peripheral BNP function might be a novel therapeutic strategy for AD and pruritic conditions.


Assuntos
Dermatite Atópica/metabolismo , Interleucinas/metabolismo , Adulto , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Histamina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Pele/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...